Submit before June 30 to help us manage compute load & be eligible for the Early Bird prizes!
Resources¶
- UNICORN Challenge proposal: https://zenodo.org/records/13981073
- Public few-shots data: https://doi.org/10.5281/zenodo.14832502
- UNICORN baseline code: https://github.com/DIAGNijmegen/unicorn_baseline
- UNICORN baseline template code: https://github.com/DIAGNijmegen/unicorn_baseline_template
- UNICORN evaluation toolkit: https://github.com/DIAGNijmegen/unicorn_eval
The recording of the UNICORN kick-off webinar can be found here:
The table below shows the public datasets that can be used for pre-training the foundation models, described per task. The name of the original dataset, the license for its use, the original public link, and related publications are provided.
¶
Task | Dataset | License | Public links | Publication |
---|---|---|---|---|
T1 | PANDA | CC BY-SA-NC 4.0 | https://www.kaggle.com/c/prostate-cancer-grade-assessment/data | [2] |
T2 | LUNA25 | CC-BY-NC | TBD | [14] |
T3 | LEOPARD | CC BY-NC-SA | https://leopard.grand-challenge.org/ | [7] |
T4 | LUNG_18_193 | CC BY 4.0 | https://www.synapse.org/Synapse:syn26722626 | [13] |
T5 | DigestPath | CC BY 4.0 | https://doi.org/10.1016/j.media.2022.102485 | [3] |
T6 | PI-CAI | CC BY-NC 4.0 | https://zenodo.org/records/6517397 (v2) | [11] |
T7 | LUNA18 | CC BY 4.0 | https://zenodo.org/records/2595812 (v3) https://zenodo.org/records/2596478 (v3) | [5] |
T8 | MIDOG | CC BY 4.0 | https://zenodo.org/records/4643380 (v1.0) | [1] |
T9 | TIGER | CC BY-NC 4.0 | https://zenodo.org/records/6014420 (v1.0) | [9] |
T10 | ULS23 | CC BY-NC-SA 4.0 | https://zenodo.org/records/10035160 (v1.0.1) https://zenodo.org/records/10050959 (v1) https://zenodo.org/records/10054305 (v1) https://zenodo.org/records/10054701 (v1) https://zenodo.org/records/10055807 (v2) https://zenodo.org/records/10056234 (v1) | [4], [10] |
T11 | SPIDER | CC BY 4.0 | https://zenodo.org/records/8009679 (v4) | [12], [8] |
T12 | DRAGON | CC BY-NC-SA 4.0 | Task 13 of DRAGON: https://dragon.grand-challenge.org/ | [6] |
T13 | DRAGON | CC BY-NC-SA 4.0 | Task 2 of DRAGON: https://dragon.grand-challenge.org/sample-reports/ | [6], Trends in the incidence of pulmonary nodules in chest computed tomography: 10-year results from two Dutch hospitals |
T14 | DRAGON | CC BY-NC-SA 4.0 | Task 3 of DRAGON: https://dragon.grand-challenge.org/sample-reports/ | [6] |
T15 | DRAGON | CC BY-NC-SA 4.0 | Task 18 of DRAGON: https://dragon.grand-challenge.org/sample-reports/ | [6] |
T16 | DRAGON | CC BY-NC-SA 4.0 | Task 15 of DRAGON: https://dragon.grand-challenge.org/sample-reports/ | [6] |
T17 | DRAGON | CC BY-NC-SA 4.0 | Task 22, 23, 24 of DRAGON: https://dragon.grand-challenge.org/sample-reports/ | [6], The PANORAMA Study Protocol: Pancreatic Cancer Diagnosis - Radiologists Meet AI Trends in the incidence of pulmonary nodules in chest computed tomography: 10-year results from two Dutch hospital |
T18 | DRAGON | CC BY-NC-SA 4.0 | Task 19, 20, 21 of DRAGON: https://dragon.grand-challenge.org/sample-reports/ | [6] |
T19 | DRAGON | CC BY-NC-SA 4.0 | Task 25 of DRAGON: https://dragon.grand-challenge.org/sample-reports/ | [6] |
T20 | WsiCaption* | N/A | https://github.com/cpystan/Wsi-Caption | [15] |
*This dataset provides full reports as captions, while this task expects a short caption corresponding to the conclusion section of a pathology report.